MITEK GUIDE Steel Framing

Connections & Bracing

Edition 4

creating the advantage

Introduction

This MiTek Guide gives the recommended design capacities of MiTek connectors for fixing to steel framing using 10 and 12 gauge Tek screws which have been calculated in accordance with AS/NZS 4600-2005 and comply with AS 3566 Class 3 corrosion resistance.

Steel framing components are to be designed and installed in accordance with the manufacturer's recommendations. They are to be certified by others to accommodate the uplift forces transferred through the connections.

When fixing to timber trusses use MiTek 30×2.8 mm diameter, hot dipped galvanized, reinforced head nails or MiTek No. 14×30 mm MSA1430, anti-split, self-drilling, hot dipped galvanized screws.

MiTek products are generally suitable for internal applications. Refer to the MiTek Durability Corrosion Flow Chart to determine the appropriate corrosion protection required for MiTek connectors.

Produced by:

MiTek Australia Limited

46 Monash Drive, Dandenong South, Victoria 3175 Australia

Phone: (03) 8795 8888 www.mitek.com.au

New South Wales

5/100 Belmore Rd, Riverwood 2210

Phone: (02) 8525 8000

Oueensland

17 Eagleview Place, Eagle Farm 4009

Phone: (07) 3861 2100

South Australia

5/348 Richmond Rd, Netley 5037

Phone: (08) 8234 1326

Western Australia

26 Cutler Road, Jandakot 6164 Phone : (08) 9412 3534

© Copyright MiTek Australia Ltd 2016.

All rights reserved. No part of this work covered by copyright may be reproduced or copied in any form, or by any means (graphic, electronic or mechanical, including photography, recording, taping or information retrieval systems) without the written permission of MiTek Australia Limited ABN 98 004 564 587.

05/05/2017

Table of Contents

	Contents	Page
	Installation Requirements	4
	Trip-L-Grip	6
1	CycloneTie	9
	Concealed Purlin Cleat	12
	SplitHanger	14
	Structural Bracing Strap	16
10	Tensioner	17
	SpeedBrace for Roofing	18
	Wall Bracing	22

Installation Requirements

Tek screw specifications for fixing to steel trusses and framing

The screws are to conform to AS 3566 Class 3 and the screw head styles can be either hexagonal washer head or wafer head. The screw sizes are $10-16 \times 16$ or $12-14 \times 20$. The diameter and length of the screws are listed in Table 1.

Table 1 - Nominal diameter and length of screws

Screw Size	Gauge	Nominal diameter (mm)	Length (mm)
10-16 x 16	10	4.87	16
12-14 x 20	12	5.43	20

Minimum spacing, edge and end distance requirements

The table below gives minimum spacing, edge and end distance that is required for fixing Tek screws to MiTek connectors.

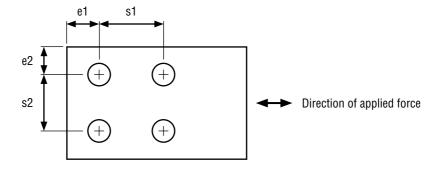


Table 2 - Minimum Spacing and Edge Distance Requirements for MiTek Connectors

Screw Size	Gauge	Min. spacing, s1 or s2 (mm)	Min. edge distance, e2 (mm)
10-16 x 16	10	15	8
12-14 x 20	12	17	9

Table 3 - Minimum End Distance Requirements for MiTek Connectors

		Minimum End Distance, e1 (mm)					
Steel Grade	Steel	Screw Size					
of Framing	Framing Thickness		10			12	
Component	(mm)			MiTek Connector	Thickness (mm)		
		0.8	1.0	1.2	0.8	1.0	1.2
G300	0.80	8	8	8	8	9	9
G300	1.00	9	8	8	9	9	9
G300	1.20	10	9	8	10	10	9
G300	1.24	10	10	8	10	10	9
G300	1.64	10	10	10	10	11	11
G450	1.65	10	10	10	10	11	11
G550	0.60	8	8	8	9	9	9
G550	0.80	9	8	8	9	9	9
G550	0.85	9	8	8	10	9	9
G550	1.00	10	10	9	10	11	10

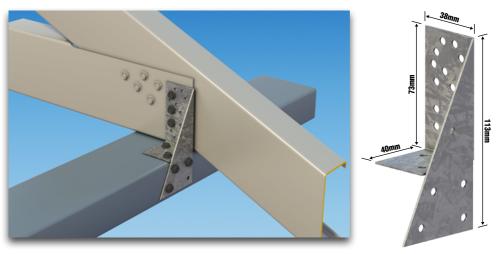
Notes:

- a) All material thicknesses specified in this guide are the total coated thickness. It includes the zinc coating of 0.04mm for Z275 or 0.05mm for AZ150 steel.
- b) The end distance is measured parallel to the direction of the applied force.

MiTek Nail and Screw specifications for fixing to timber trusses

The nail is MiTek 2.8mm diameter and 30mm long hot dipped galvanized reinforced head nail.

The screw is MSA1430 MiTek No. 14 x 30mm anti-split self-drilling hot dipped galvanized screws.


Minimum timber joint group is JD5.

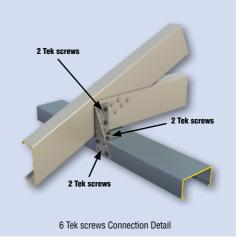
Design uplift capacities for nails and screws given in this guide incorporate the capacity factor (ø) for houses. For different building applications, multiply the design capacities by the following factors. Refer to AS 1720.1 for a full definition of each category of building application.

Table 4 - Adjustment Factor for Building Application

Category	Building Application	Adjustment Factor	
1	House	1.00	
2	Commercial/Industrial	0.94	
3	Post Disaster	0.88	

Trip-L-Grip

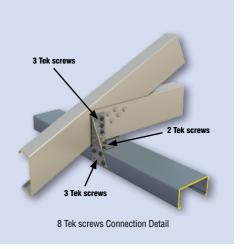
Trip-L-Grips are the most economical anchors used to simplify tie-down rafters or roof trusses.


Specifications

Product Code	Steel Grade	Galvanized Coating	Total Coated Thickness
TGL or TGR	G300	Z275	1.0mm

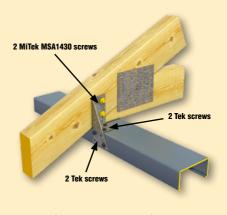
Fixing into steel roof trusses

Table 5 - Design Capacities using 6 Tek screws per connection


Steel Grade	Steel Framing		Design Capacity Uplift (kN)	
of Framing Component	Thickness	Scre	w Size	
Component	(mm)	10	12	
G300	0.80	2.0	2.2	
G300	1.00	2.9	3.1	
G300	1.20	3.9	4.2	
G300	1.24	4.1	4.4	
G300	1.64	4.3	4.8	
G450	1.65	4.3	4.8	
G550	0.60	1.5	1.6	
G550	0.80	3.0	3.1	
G550	0.85	3.3	3.5	
G550	1.00	4.3	4.8	

Notes apply, see page 7.

Table 6 - Design Capacities using 8 Tek screws per connection


Steel Grade	Steel Framing	Limit State De in Wind L	
of Framing Component	Thickness	Screw Size	
Component	(mm)	10	12
G300	0.80	3.1	3.2
G300	1.00	4.4	4.6
G300	1.20	5.9	6.0
G300	1.24	6.0	6.0
G300	1.64	6.0	6.0
G450	1.65	6.0	6.0
G550	0.60	2.3	2.5
G550	0.80	4.5	4.7
G550	0.85	4.9	5.2
G550	1.00	6.0	6.0

Fixing into timber roof trusses

Table 7 - Design Capacities using 2 MiTek MSA1430 and 4 Tek screws per connection

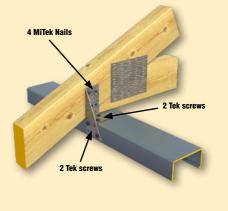
Steel Grade	Steel Framing	Limit State De in Wind L	esign Capacity Iplift (kN)
of Framing Component	Thickness	Screv	v Size
Component	(mm)	10	12
G300	0.80	2.0*	2.2*
G300	1.00	2.9*	3.1*
G300	1.20	3.3	3.3
G300	1.24	3.3	3.3
G300	1.64	3.3	3.3
G450	1.65	3.3	3.3
G550	0.60	1.5*	1.6*
G550	0.80	3.0*	3.1*
G550	0.85	3.3	3.3
G550	1.00	3.3	3.3

2 MiTek MSA1430 and 4 Tek screws Connection Detail

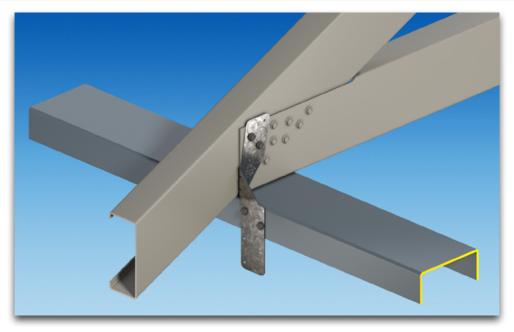
- a) * Adjustment factors do not apply to this value, refer to MiTek nail and screw specifications on page 5 for details.
- b) Adopt the minimum design capacity determined from the tables when different material type, material thickness and grade are used for rafter/truss and the wall plate.
- c) The capacity is doubled when a pair of Trip-L-Grips are used in the connection.

Trip-L-Grip

Table 8 - Design Capacities using 3 MiTek MSA1430 and 5 Tek screws per connection


Steel Framing		esign Capacity Jplift (kN)	
Thickness	Screv	v Size	
(mm)	10	12	
0.80	3.1*	3.2*	
1.00	4.4*	4.6*	
1.20	5.0	5.0	
1.24	5.0	5.0	
1.64	5.0	5.0	
1.65	5.0	5.0	
0.60	2.3*	2.5*	
0.80	4.5*	4.7*	
0.85	4.9	5.0	
1.00	5.0	5.0	
	Framing Thickness (mm) 0.80 1.00 1.20 1.24 1.64 1.65 0.60 0.80 0.85	Steel In Wind L	

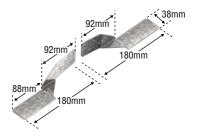
3 MiTek MSA1430 and 5 Tek screws Connection Detail


Table 9 - Design Capacities using 4 MiTek nails & 4 Tek screws per connection

Steel Grade	Steel Framing	Limit State De in Wind U	esign Capacity Iplift (kN)
of Framing Component	Thickness	Screv	v Size
Component	(mm)	10	12
G300	0.80	2.0*	2.2*
G300	1.00	2.6	2.6
G300	1.20	2.6	2.6
G300	1.24	2.6	2.6
G300	1.64	2.6	2.6
G450	1.65	2.6	2.6
G550	0.60	1.5*	1.6*
G550	0.80	2.6	2.6
G550	0.85	2.6	2.6
G550	1.00	2.6	2.6

4 MiTek Nails and 4 Tek screws Connection Detail

- a) * Adjustment factors do not apply to this value, refer to MiTek nail and screw specifications on page 5 for details.
- b) Adopt the minimum design capacity determined from the tables when different material type, material thickness and grade are used for rafter/truss and the wall plate.
- c) The capacity is doubled when a pair of Trip-L-Grips are used in the connection.

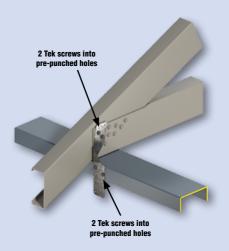


The CT180 is used to secure rafters and trusses to top plates in areas subject to cyclonic or high wind conditions.

Specifications

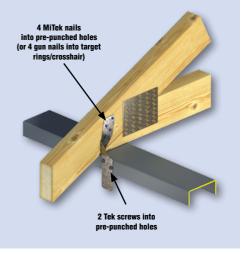
Product Code	Steel Grade	Galvanized Coating	Total Coated Thickness
CT180L & CT180R	G300	Z275	1.0mm

- a) Do not apply the adjustment factors to the values marked with * in Table 11, refer to MiTek nail and screw specifications on page 5 for details.
- Adopt the minimum design capacity determined from the table when different material type, material thickness and grade are used for rafter/ truss and the wall plate.
- c) The capacity is doubled when a pair of CT180s are used in the connection.
- d) MiTek nails are 30x2.8mm blue galvanized reinforced head nails, hammered into pre-punched holes in the connector.
- e) Optional gun nails are 32x2.5mm dia. AS 2334 compliant helical twist shank hardened galvanized nails. Centrally locate nail gun's nozzle within the target rings and pneumatically drive the gun nails into the crosshairs. Do not direct gun nails into pre-punched holes.



Fixing into steel roof trusses

Table 10 - Design Capacities using 4 Tek screws per connection


Steel Grade	Total Thickness	Limit State De	
of Framing Component	including Coating	Screv	v Size
	(mm)	10	12
G300	0.80	2.0	2.2
G300	1.00	2.9	3.1
G300	1.20	3.7	3.7
G300	1.24	3.7	3.7
G300	1.64	3.7	3.7
G450	1.65	3.7	3.7
G550	0.60	1.5	1.6
G550	0.80	3.0	3.1
G550	0.85	3.3	3.5
G550	≥ 1.00	3.7	3.7

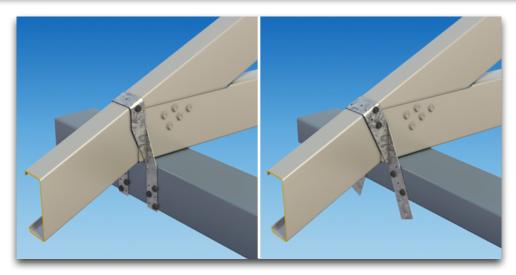
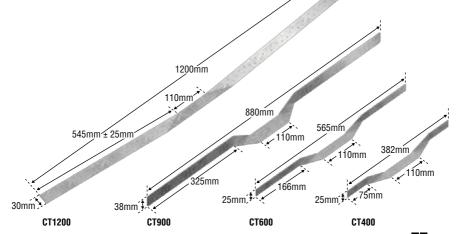

Fixing into timber roof trusses

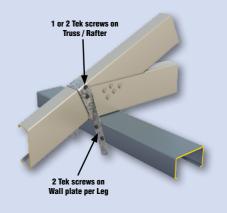
Table 11 – Design Capacities using 4 MiTek nails (or 4 gun nails) and 2 Tek screws per connection

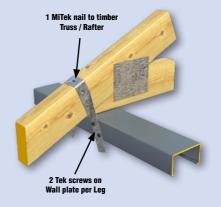
Steel Grade	Total Thickness	Limit State De	
of Framing Component	including Coating	Screv	v Size
00	(mm)	10	12
G300	0.80	2.0*	2.2*
G300	1.00	2.6	2.6
G300	1.20	2.6	2.6
G300	1.24	2.6	2.6
G300	1.64	2.6	2.6
G450	1.65	2.6	2.6
G550	0.60	1.5*	1.6*
G550	0.80	2.6	2.6
G550	0.85	2.6	2.6
G550	≥ 1.00	2.6	2.6



CycloneTie CT400-1200

CycloneTies are used to secure rafters and trusses to top plates in areas subject to cyclonic or high wind conditions.

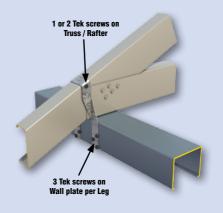

Product Code	Steel Grade	Galvanized Coating	Total Coated Thickness	
CT400	G300	Z275	1.0mm	
CT600	G300	Z275	1.2mm	
CT900	G300	Z275	1.0mm	
CT1200	G300	7275	0.8mm	

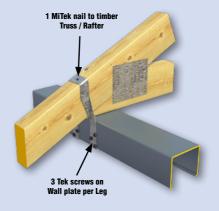


CycloneTie CT400-1200

Table 12 - Design Capacities using 2 Tek screws per leg on wall plate

Steel Grade	Steel Framing		esign Capacity Jplift (kN)					
of Framing Component	Thickness	Screv	w Size					
Component	(mm)	10	12					
CycloneTie CT1	CycloneTie CT1200							
G300	1.20	6.7	7.3					
G300	1.24	6.7	7.3					
G300	1.64	6.7	7.3					
G450	1.65	6.7	7.3					
G550	0.60	3.1	3.3					
G550	0.80	6.0	6.3					
G550	0.85	6.6	6.9					
G550	1.00	6.7	7.3					
CycloneTie CT4	00 & CT900							
G300	1.20	7.8	8.2					
G300	1.24	8.2	8.7					
G300	1.64	8.6	9.6					
G450	1.65	8.6	9.6					
G550	0.60	3.1	3.3					
G550	0.80	6.0	6.3					
G550	0.85	6.6	6.9					
G550	1.00	8.6	9.6					
CycloneTie CT6	00							
G300	1.20	7.8	8.2					
G300	1.24	8.2	8.7					
G300	1.64	10.4	11.6					
G450	1.65	10.4	11.6					
G550	0.60	3.1	3.3					
G550	0.80	6.0	6.3					
G550	0.85	6.6	6.9					
G550	1.00	9.4	10.0					

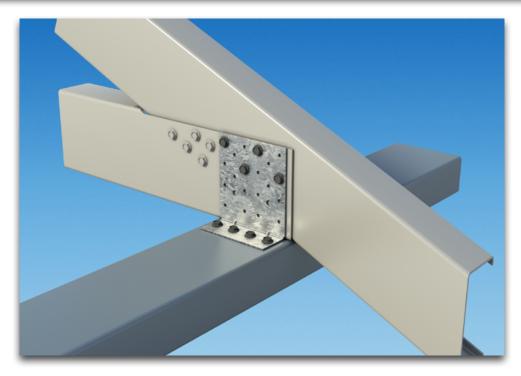



Notes:

Select the design capacity from the steel framing material thickness and grade.

Table 13 - Design Capacities using 3 Tek screws per leg on wall plate

Steel Grade	Stool		esign Capacity Jplift (kN)			
of Framing Component	Thickness	Scre	v Size			
Component	(mm)	10	12			
CycloneTie CT1	200					
G300	1.20	9.6	9.6			
G300	1.24	9.6	9.6			
G300	1.64	9.6	9.6			
G450	1.65	9.6	9.6			
G550	0.60	4.7	4.9			
G550	0.80	9.6	9.6			
G550	0.85	9.6	9.6			
G550	1.00	9.6	9.6			
CycloneTie CT4	CycloneTie CT400 & CT900					
G300	1.20	9.8	9.8			
G300	1.24	9.8	9.8			
G300	1.64	9.8	9.8			
G450	1.65	9.8	9.8			
G550	0.60	4.7	4.9			
G550	0.80	8.9	9.4			
G550	0.85	9.8	9.8			
G550	1.00	9.8	9.8			
CycloneTie CT6	i00					
G300	1.20	11.8	11.8			
G300	1.24	11.8	11.8			
G300	1.64	11.8	11.8			
G450	1.65	11.8	11.8			
G550	0.60	4.7	4.9			
G550	0.80	8.9	9.4			
G550	0.85	9.8	10.4			
G550	1.00	11.8	11.8			



Notes:

Select the design capacity from the steel framing material thickness and grade.

Concealed Purlin Cleat

The Concealed Purlin Cleat is an economical bracket for fixing rafters, or trusses to top of walls to resist wind uplift.

Specifications

Product Code	Steel Grade	Galvanized Coating	Total Coated Thickness
CPC80	G300	Z275	1.55mm

Installation:

The required number of screws into the support depends on its width as shown in the table below.
 The location of the group of screws is to be centred on the support.

Table 14 - Required width of support

Minimum support width (mm)	Number of screws into support	
90	4	
70	3	
50	2	

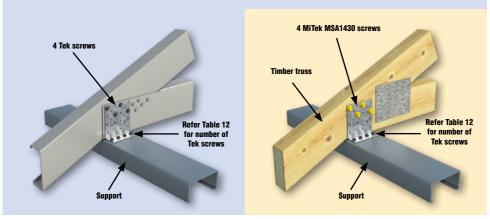

Always fix 4 screws in large holes into the side of the truss no matter how many screws are fixed into the support. Use the same Tek screw size when fixing into steel trusses and frames. Use MiTek MSA1430 screws when fixing into timber trusses.

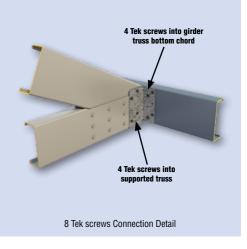
Table 15 - Design Capacities per Concealed Purlin Cleat

Steel Grade	Steel	Limit State Design Capacity in Wind Uplift (kN)					
of Framing	Framing Number of 10g Tek Screws		Number of 12g Tek Screws				
Component	(mm)	2	3	4	2	3	4
G300	1.00	1.3	2.0	2.7	1.5	2.2	3.0
G300	1.20	1.6	2.4	3.2	1.8	2.7	3.6
G300	1.24	1.7	2.5	3.4	1.9	2.8	3.7
G300	1.64	2.2	3.4	4.5	2.5	3.7	5.0
G450	1.65	3.2	4.8	6.4	3.5	5.3	6.6
G550	1.00	2.2	3.2	4.3	2.4	3.6	4.8

Notes:

The capacity is doubled when a pair of cleats are used in the connection.

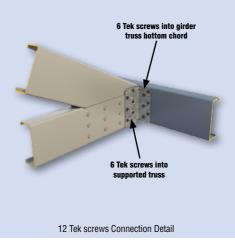
SplitHanger


SplitHanger provides a fast and easy fixing method for truss to truss and truss to lintel connection.

Specifications

Product Code	Steel Grade	Steel Grade Galvanized Coating	
SPH140	G300	Z275	1.55mm

Table 16 - Design Capacities of a single SplitHanger using 4 screws into girder and 4 screws into supporting truss


Ota al Ova da	Steel Car		State Design pacity (kN)	
Steel Grade of Framing Component	Framing Thickness	Screv	/ Size	
Component	(mm)	10	12	
G300	0.80	1.3	1.4	
G300	1.00	1.9	2.0	
G300	1.20	2.6	2.7	
G300	1.24	2.7	2.9	
G550	0.80	2.0	2.1	
G550	0.85	2.2	2.3	
G550	1.00	3.1	3.3	

Notes apply, see page 17.

Table 17 - Design Capacities of a single SplitHanger using 6 screws into girder and 6 screws into supporting truss

Steel Grade	Steel		te Design ity (kN)
of Framing Component	Framing Thickness	Screv	v Size
Component	(mm)	10	12
G300	0.80	2.0	2.1
G300	1.00	2.9	3.1
G300	1.20	3.9	4.1
G300	1.24	4.1	4.3
G550	0.80	3.0	3.1
G550	0.85	3.3	3.4
G550	1.00	4.7	5.0

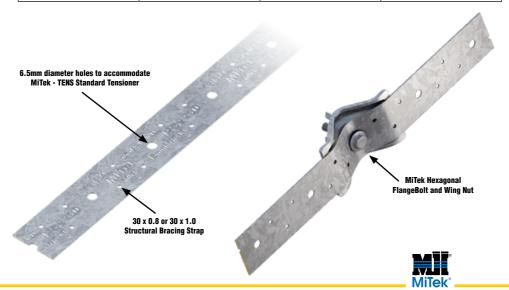
- a) The design capacities are based on a single SplitHanger on one side of the connection.
- b) When the girder trusses and supported trusses are made from different materials, the design capacity is the lower of the two.
- c) Ensure additional restraints are provided to the girder bottom chord against twisting under high loads at the connection.
- d) Ensure no gaps at each screw connection between fixing materials.

Structural Bracing Strap

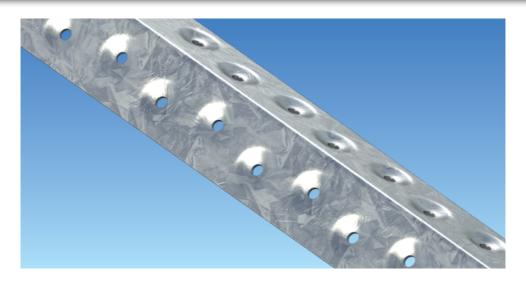
Structural Bracing Strap is suitable for a wide variety of bracing applications.

Product Code	Steel Grade	Galvanized Coating	Description	Total Coated Thickness
PS223010	G300	Z275	30mm wide x 10m long	0.8mm
PS223030	G300	Z275	30mm wide x 30m long	0.8mm
PS223050	G300	Z275	30mm wide x 50m long	0.8mm
PS203010	G300	Z275	30mm wide x 10m long	1.0mm
PS203020	G300	Z275	30mm wide x 20m long	1.0mm
PS203030	G300	Z275	30mm wide x 30m long	1.0mm
PS203050	G300	Z275	30mm wide x 50m long	1.0mm

Table 18 - Design Tensile Capacities

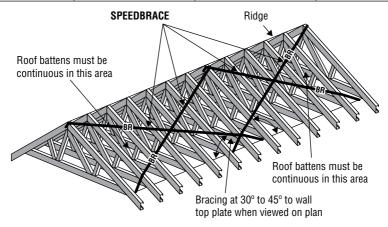

Size Design Tension Capacity (kN)	
30 × 0.8	5.0
30 x 1.0	6.1

Tensioner

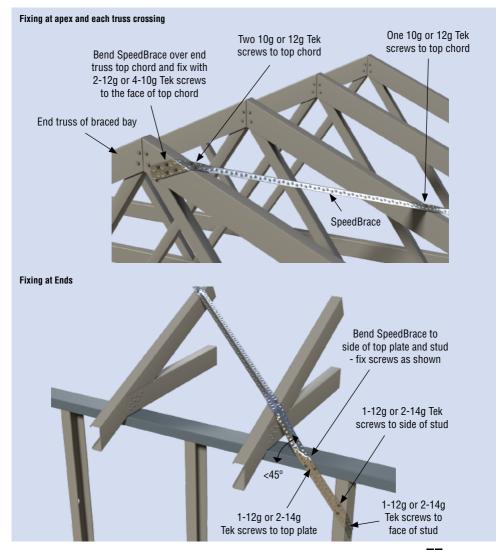


Tensioner provides fast tensioning for Structural Bracing Strap. A MiTek hexagonal flanged bolt and wingnut are included for power or hand tightening.

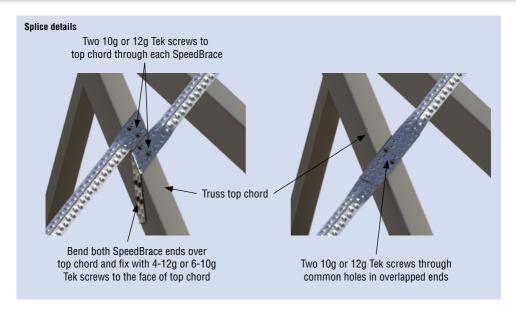
Product Code	Steel Grade	Galvanized Coating	Total Coated Thickness
TENS	G300	Z275	2.50mm



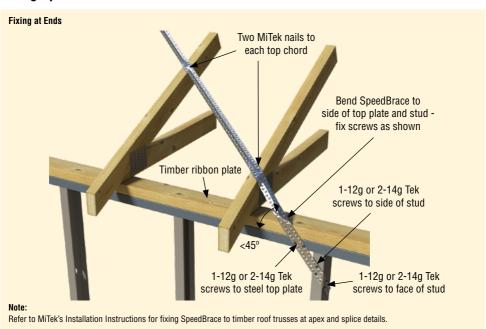
SpeedBrace for Roof Bracing

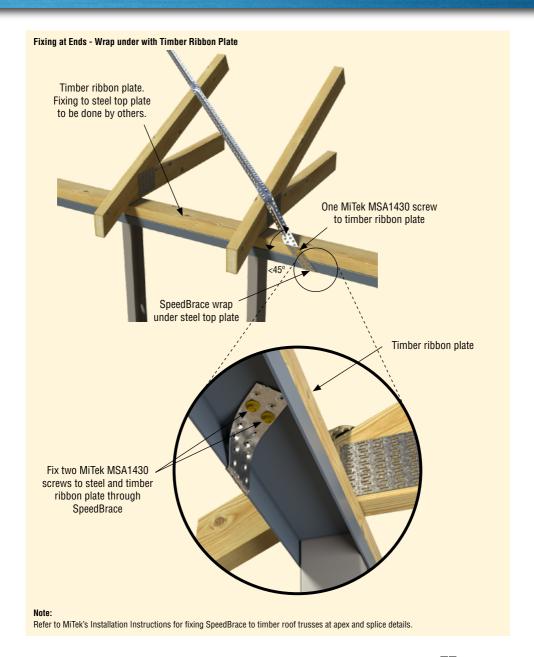

SpeedBrace is suitable for roof top chord bracing to transfer the forces generated in the top chord restraints back to the supporting structures. It is assumed that the roof battens are also installed to provide the lateral restraints for the top chords of the roof trusses and the walls are stable in its own right.

Product Code	Steel Grade	Galvanized Coating	Total Coated Thickness	
SB3.6-3.6m				
SB4.0-4.0m	G300	Z275	1.0mm	
SB5.0-5.0m	G300	2273	1.0111111	
SB6.0-6.0m				



The following typical fixing details provides limit state design capacity of 8.4 kN for the SpeedBrace in tension and design capacity of 7.2 kN for splicing. Note that for lap splice, the splice is located not less than 2.5 m from the anchorage point measured along the SpeedBrace. The details are applicable to framing component with steel grade G550 with thickness of 0.8mm and 1.0mm.


Fixing SpeedBrace to Steel Trusses and Wall Frame



SpeedBrace for Roof Bracing

Fixing SpeedBrace to Timber Trusses and Steel Wall Frame

Wall Bracing

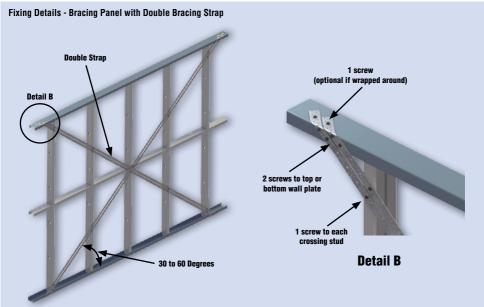
Installation:

- Structural Bracing Strap is a tension brace and therefore must be installed in pairs, in opposing diagonal directions.
- Apply each length of Bracing Strap with MiTek Tensioner and ensure the strap is properly tightened. Too much tension
 will reduce the effectiveness of the strap.
- The angle of the strap must be between 30 and 60 degrees to the horizontal.
- Ensure minimum edge and end distance requirements are met when fixing screws to prevent tear out and reduced
 capacities. Refer to Tables 2 & 3 on pages 4 & 5 for details.
- · Tie down is required at each end of the bracing wall to resist uplift reaction produced by the raking forces.

Table 19 - Bracing Capacity for G550, 0.8mm framing

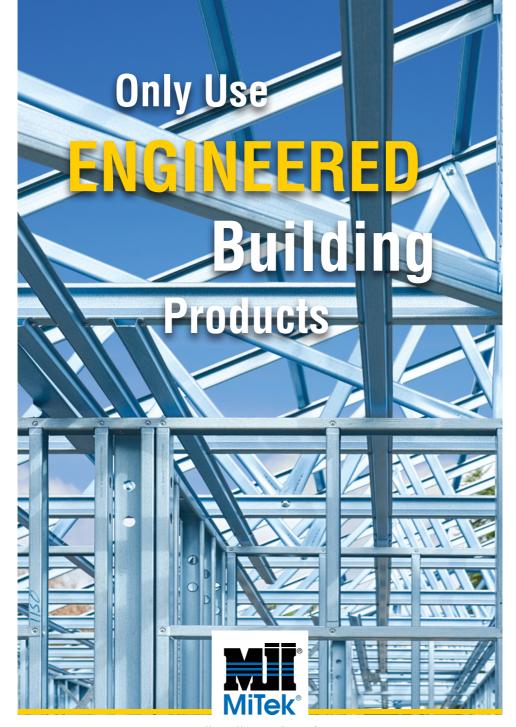
	Structural Wall height bracing strap (mm)	Bracing Capacity (kN)				
Structural bracing strap		Bracing Wall length (mm)				
		1800	2100	2400	2700	3000
	2/10g scre	ws per bracing stra	p at each ends & 1/	10g screw to each	stud crossing	
	2400	1.8	2.0	2.1	2.2	2.3
30 x 0.8	2700	1.7	1.8	2.0	2.1	2.2
	3000	1.5	1.7	1.9	2.0	2.1
	2400	1.8	2.0	2.1	2.2	2.3
30 x 1.0	2700	1.7	1.8	2.0	2.1	2.2
	3000	1.5	1.7	1.9	2.0	2.1
2/12g screws per bracing strap at each ends & 1/12g screw to each stud crossing						
	2400	1.9	2.0	2.2	2.3	2.4
30 x 0.8	2700	1.7	1.9	2.1	2.2	2.3
	3000	1.6	1.8	1.9	2.1	2.2
	2400	1.9	2.0	2.2	2.3	2.4
30 x 1.0	2700	1.7	1.9	2.1	2.2	2.3
	3000	1.6	1.8	1.9	2.1	2.2

Table 20 - Bracing Capacity for G550, 1.0mm framing


	Wall height (mm)	Bracing Capacity (kN)				
Structural bracing strap		Bracing Wall length (mm)				
Draoing on ap		1800	2100	2400	2700	3000
	2/10g scre	ws per bracing stra	p at each ends & 1/	10g screw to each	stud crossing	
	2400	2.0	2.2	2.3	2.5	2.6
30 x 0.8	2700	1.8	2.0	2.2	2.3	2.5
	3000	1.7	1.9	2.1	2.2	2.3
	2400	2.6	2.8	3.0	3.2	3.4
30 x 1.0	2700	2.4	2.6	2.9	3.0	3.2
	3000	2.2	2.5	2.7	2.9	3.0
2/12g screws per bracing strap at each ends & 1/12g screw to each stud crossing						
	2400	2.2	2.4	2.5	2.7	2.8
30 x 0.8	2700	2.0	2.2	2.4	2.5	2.7
	3000	1.9	2.1	2.2	2.4	2.5
	2400	2.9	3.2	3.4	3.6	3.7
30 x 1.0	2700	2.7	2.9	3.2	3.4	3.6
	3000	2.5	2.8	3.0	3.2	3.4

- a) The values in the tables do not include the nominal 0.45 kN/m sheet bracing capacity from plywood or plasterboard lining.
- b) The bracing capacity in the tables above are doubled when double bracing straps are used in the bracing wall.

Wall Bracing



Notes: Screws must be driven through pre-punched holes so the strength of the Bracing Strap is not reduced.

References

1)	AS 1397-2001 Steel sheet and strip – Hot-dip zinc coated or aluminium/zinc coated
2)	AS 3566.1-2002 Self-drilling screws for the building and construction industries – General requirements and mechanical properties
3)	AS 3566.2-2002 Self-drilling screws for the building and construction industries – Corrosion resistance requirements
4)	AS/NZS 4600-2005 Cold-formed steel structures
5)	AS 1720.1-2010 Timber structures Part 1: Design methods
Pe	rsonal Notes:

creating the advantage