SplitHanger

mitek.com.au

SUITABLE FOR VARIOUS WIDTHS OF TIMBER BEAM

APPLICATION:

SplitHangers are versatile hangers that provide a heavy duty connection for various solid timber beam widths to supporting beams. They provide a fast and easy fixing method for various width of timber beam to supporting beam, waling plate to stud and where clearance is required at corner beam connection.

ADVANTAGES

- No requirement to determine hanger's width to suit beam thickness.
- Quick installation with screws.
- Proprietary MSA screws can drive through sheet metal without need to pre-drill.
- Improved performance over nailed hanger alternatives.
- Versatile heavy duty hanger

SPECIFICATIONS:

Steel Grade	G300
Thickness (Total Coated)	1.55mm
Galvanized Coating	Z275
Screws	MSA1430 - MiTek No.14 x 30mm anti-split self-drilling HD galvanized screws
Product Code	SPH140 SPH180 SPH220

This Engineered Building Product has been designed and manufactured in accordance with ISO 9001 and meets all the requirements of the National Construction Code Series and Australian Standards.

FIXING POSITION

SPLITHANGER SPH140 LOAD DATA

	Number of screws fixed to each face		Limit State Design Capacity for a pair of SPH140 (kN) in standard configuration										
Load Case	Supporting	Supported	Timber Joint Group										
	Beam	Beam	J2	J3	J4	J5	J6	JD2	JD3	JD4	JD5	JD6	
DL Only	3	3	9.9	7.0	5.0	3.7	2.3	12.5	9.9	7.0	5.0	3.7	
k1 = 0.57	6	6	17.4	12.4	8.8	6.4	4.1	23.3	18.3	13.1	9.3	6.8	
DL + Floor LL	3	3	11.9	8.5	6.1	4.4	2.8	15.2	11.9	8.5	6.1	4.4	
k1 = 0.69	6	6	21.0	15.0	10.6	7.8	5.0	28.2	22.2	15.9	11.3	8.2	
DL + Roof LL	3	3	13.3	9.5	6.8	4.9	3.2	15.3	13.3	9.5	6.8	4.9	
k1 = 0.77	6	6	23.4	16.8	11.9	8.7	5.6	29.6	24.8	17.7	12.6	9.2	
DL + WL	3	3	15.3	14.1	10.0	7.3	4.7	15.3	15.3	14.1	10.0	7.3	
k1 = 1.14	6	6	29.6	24.8	17.6	12.8	8.2	29.6	29.6	26.2	18.6	13.6	

NOTES:

- 1. The design capacities in this table apply to a pair of SplitHangers fitted on both sides of the supported beam in the standard configuration.
- 2. When a pair of SplitHangers is stacked on one side, use 65% of the standard capacity.
- 3. When a single SplitHanger is fitted on one side only, use 33% of the standard capacity.

Category	1	2	3
Adjustment factor	1.00	0.94	0.88

Values in this table incorporate the Category 1 capacity factor (\emptyset) for houses. For other categories, multiply the design capacities by the following factors. Refer to AS1720.1 for a full definition of each category.

Design capacities have been obtained from laboratory testing and procedures given in AS1720.1.

FIXING POSITION

SPLITHANGER SPH180 LOAD DATA

	Number of s to eac	screws fixed h face	Limit State Design Capacity for a pair of SPH180 (kN) in standard configu						nfiguration	1			
Load Case	Supporting	Supported	Timber Joint Group										
	Beam	Beam	J2	J3	J4	J5	J6	JD2	JD3	JD4	JD5	JD6	
DL Only	4	4	13.1	9.4	6.7	4.9	3.1	16.7	13.1	9.4	6.7	4.9	
k1 = 0.57	8	8	22.1	15.8	11.2	8.2	5.2	30.7	24.2	17.3	12.3	8.9	
DL + Floor LL	4	4	15.9	11.4	8.1	5.9	3.8	20.2	15.9	11.4	8.1	5.9	
k1 = 0.69	8	8	26.7	19.1	13.6	9.9	6.4	37.2	29.3	20.9	14.8	10.8	
DL + Roof LL	4	4	17.8	12.7	9.0	6.6	4.4	20.4	17.8	12.7	9.0	6.6	
k1 = 0.77	8	8	29.8	21.3	15.1	11.0	7.1	37.8	32.7	23.3	16.6	12.1	
DL + WL	4	4	20.4	18.8	13.3	9.7	6.2	20.4	20.4	18.8	13.3	9.7	
k1 = 1.14	8	8	37.8	31.6	22.4	16.3	10.5	37.8	37.8	34.6	24.5	17.9	

NOTES:

- 1. The design capacities in this table apply to a pair of SplitHangers fitted on both sides of the supported beam in the standard configuration.
- 2. When a pair of SplitHangers is stacked on one side, use 65% of the standard capacity.
- 3. When a single SplitHanger is fitted on one side only, use 33% of the standard capacity.

Category	1	2	3
Adjustment factor	1.00	0.94	0.88

Values in this table incorporate the Category 1 capacity factor (\emptyset) for houses. For other categories, multiply the design capacities by the following factors. Refer to AS1720.1 for a full definition of each category.

Design capacities have been obtained from laboratory testing and procedures given in AS1720.1.

SPLITHANGER - SPH220

SPLITHANGER SPH220 LOAD DATA

	Number of screws fixed to each face		Limit State Design Capacity for a pair of SPH220 (kN) in standard configuration											
Load Case	Supporting	Supported	Timber Joint Group											
	Beam	Beam	J2	J3	J4	J5	J6	JD2	JD3	JD4	JD5	JD6		
DL Only	5	5	14.9	10.6	7.5	5.5	3.5	19.6	15.4	11.0	7.8	5.7		
k1 = 0.57	10	10	26.3	18.8	13.3	9.7	6.2	37.5	29.6	21.1	15.0	10.9		
DL + Floor LL	5	5	17.9	12.8	9.1	6.6	4.3	23.4	18.7	13.4	9.5	6.9		
k1 = 0.69	10	10	31.8	22.7	16.1	11.8	7.6	45.4	35.8	25.6	18.1	13.2		
DL + Roof LL	5	5	20.0	14.3	10.1	7.4	4.7	25.5	20.9	14.9	10.6	7.7		
k1 = 0.77	10	10	35.5	25.4	18.0	13.1	8.4	46.0	40.0	28.6	20.3	14.8		
DL + WL	5	5	25.5	21.1	15.0	10.9	7.0	25.5	25.5	22.1	15.7	11.4		
k1 = 1.14	10	10	46.0	37.6	26.7	19.4	12.5	46.0	46.0	42.3	30.0	21.9		

NOTES:

- 1. The design capacities in this table apply to a pair of SplitHangers fitted on both sides of the supported beam in the standard configuration.
- 2. When a pair of SplitHangers is stacked on one side, use 65% of the standard capacity.
- 3. When a single SplitHanger is fitted on one side only, use 33% of the standard capacity.

Category	1	2	3
Adjustment factor	1.00	0.94	0.88

Values in this table incorporate the Category 1 capacity factor (\emptyset) for houses. For other categories, multiply the design capacities by the following factors. Refer to AS1720.1 for a full definition of each category.

Design capacities have been obtained from laboratory testing and procedures given in AS1720.1.

- 1. Use MiTek MSA1430 screws in single ply beams.
- 2. Use MiTek MSA1465 screws in double 35mm ply beams. In double 45mm ply beams and beyond, the layers are also to be laminated together with additional fixings for load sharing.
- 3. Drive selected number of MiTek screws into supporting and supported beam as indicated in the tables for each SplitHanger size to obtain the required design capacities. Always fit MiTek screws into round holes before using square ones.

licensed MiTek fabricator, please call your local state office or visit: **mitek.com.au**

HOME OF GANG-NAIL BUILDING SYSTEMS

 $\textbf{VIC} (03) \ 8795 \ 8888 \quad \textbf{NSW} (02) \ 8525 \ 8000 \quad \textbf{QLD} (07) \ 3861 \ 2100 \quad \textbf{SA} (08) \ 8234 \ 1326 \quad \textbf{WA} (08) \ 9412 \ 3534 \ 1326 \ \textbf{WA} (08) \ 9412 \ 3534 \ 1326 \ \textbf{WA} (08) \ 9412 \ 3534 \ 1326 \ \textbf{WA} (08) \ 9412 \ 3534 \ \textbf{WA} (08) \ 9412 \ 354 \ \textbf{WA} (08) \ \textbf$

SPH 10/18